The Fundamentals of Linear Algebra

Zachary Lihn

Columbia Undergraduate Math Society
July 11, 2023

Part I
What's Linear Algebra?

What's Linear Algebra?

- "Mathematics is the art of reducing any problem to linear algebra." -William Stein
- Linear algebra is one of the only mathematical theories that we understand almost completely
- All of math uses linear algebra as a source of examples, proof techniques, etc. Most problems are solved by reducing to linear algebra (e.g. linear approximation via derivatives)

Summer Plan

- Review of the fundamentals (today): vector spaces, linear maps, bases, products, dual spaces
- Tensors: a unified language for multilinear maps
- Exterior Products: A powerful construction, using tensors, that allows intrinsic definitions of trace, determinant, and rank. Motivated geometrically by "area."
- Matrix operators: Power series of matrices (e.g. matrix exponential). Derivatives of these power series.
- Canonical forms: Diagonalizability and Jordan canonical form. Allows "reading off" the geometry of a matrix from the canonical form. Powerful for theory and applications.
- Scalar products: Generalizes the dot product in \mathbb{R}^{n}.
- Bilinear forms: Bilinear maps $V \times V \rightarrow \mathbb{R}$ (or \mathbb{C}).

Part II

Vector Spaces

Abstract Vector Spaces

Let k be a field (e.g. \mathbb{R} or \mathbb{C}).

Definition 0.1

A set V is a vector space over k if

1. V is an abelian group under operation + : there is a zero element 0 , addition $u+v$ for $u, v \in V$ is defined, there are inverses $-u$ with $u+(-u)=0$, and $u+v=v+u$ (commutativity).
2. Scalar multiplication is defined: for $\lambda \in k, v \in V$, we have $\lambda v \in V$.
3. For all $u, v \in V$ and $\lambda, \mu \in k$,

$$
(\lambda+\mu) v=\lambda v+\mu v, \lambda(v+u)=\lambda v+\lambda u, 1 v=v, 0 v=0
$$

(distributivity)
Note that the definition is abstract: we don't explain how addition and multiplication work, we just say what properties they must satisfy.

Examples of Vector Spaces

- $\mathbb{R}^{n}, \mathbb{C}^{n}, \mathbb{Q}^{n}$ are vector spaces over $\mathbb{R}, \mathbb{C}, \mathbb{Q}$ respectively.
- If $v \in \mathbb{R}^{n}$, the set $\left\{u \in \mathbb{R}^{n}: u \cdot v=0\right\}$ is a vector space, the orthogonal complement (• is the usual dot product).
- The set of all real-valued continuous functions on $[0,1]$, denoted $C([0,1])$, is a vector space.
- So is $\{f \in C([0,1]): f(0)=f(1)=0\}$.
- Polynomials of degree $\leq d$ over a field k form a finite-dimensional vector space over k.

Linear Independence and Bases

Definition 0.2

A tuple of vectors $\left(v_{1}, \ldots, v_{n}\right)$ is linearly dependent if there exist $\lambda_{1}, \ldots, \lambda_{n} \in k$, not all equal to zero, such that

$$
\lambda_{1} v_{1}+\cdots+\lambda_{n} v_{n}=0 .
$$

If $\left(v_{1}, \ldots, v_{n}\right)$ are not linearly dependent, we say they are linearly independent.

Definition 0.3

A vector space is n-dimensional if there exists a linearly independent set of n vectors, but no linearly independent set of $n+1$ vectors. It is infinite-dimensional if there exist n linearly independent vectors for any n.

- \mathbb{R}^{n} is n-dimensional, but $C([a, b])$ is infinite-dimensional.

Definition 0.4 (Equivalent)

The dimension of V is the longest length of any chain of strictly increasing vector subspaces

$$
V_{0} \subsetneq V_{1} \subsetneq \cdots \subsetneq V_{n}
$$

Bases

Definition 0.5

An (ordered) basis in a vector space V is a tuple $\left(e_{1}, \ldots, e_{n}\right)$ of linearly independent vectors such that any vector $v \in V$, can be expressed as $v=\sum_{k=1}^{n} v_{k} e_{k}$ for some $v_{k} \in k$ (i.e. $\left(e_{1}, \ldots, e_{n}\right)$ span V).
The numbers v_{k} are the components of v with respect to $\left(e_{1}, \ldots, e_{n}\right)$.

- This definition only works (as written) for finite-dimensional vector spaces. For infinite dimensions, you will have an infinite basis, but only finite linear combinations are allowed.
- A basis is extra data associated to V ! There are many choices of basis for a given vector space.
- Equivalent definition: A basis is a choice of isomorphism from V to the "standard" vector space k^{n}, where $n=\operatorname{dim} V$. If $\varphi: V \rightarrow k^{n}$ is the isomorphism, the basis vectors are given by $e_{i}=\varphi^{-1}((0, \ldots, 0,1,0, \ldots, 0))$ with the 1 in the i th place.

Theorem 1

In a finite-dimensional vector space, all bases have equally many vectors (i.e. dimension is a well-defined integer).

Theorem 2

Every vector space has a basis.
This turns out to be equivalent to the axiom of choice! Think about what a basis of \mathbb{R} over \mathbb{Q} would look like.

Part III

Linear Maps

Linear Maps Between Vector Spaces

Definition 0.6

A function $A: V \rightarrow W$ between vector spaces V, W is linear if for all $\lambda \in k$ and $u, v \in V$, $A(u+\lambda v)=A(u)+\lambda A(v)$.

- If A is a linear map $V \rightarrow V$ and $\left(e_{j}\right)_{j}$ is a basis then there exist $A_{j k} \in k(j, k=1, \ldots, n)$ such that if $v=\sum_{j=1}^{n} v_{j} e_{j}$, then $(A v)_{j}=\sum_{k=1}^{n} A_{j k} v_{k}$.
- By linearity, $A v=A\left(\sum_{k=1} v_{k} e_{k}\right)=\sum_{k=1} v_{k} A\left(e_{k}\right)$ so A is determined by where it sends e_{k}.
- In basis $\left(e_{j}\right)_{j}$, we can write $A e_{k}$ as $A e_{k}=\sum_{j=1}^{n} A_{j} k e_{j}$.
- So $A v=\sum_{k=1}^{n} v_{k} \sum_{j=1}^{n} A_{j k} e_{j}$.
- The matrix $\left(A_{j k}\right)_{j, k=1, \ldots, n}$ determines A in the given basis $\left(e_{1}, \ldots, e_{n}\right)$.

The composition of two linear maps $A: V \rightarrow W$ and $B: W \rightarrow Z$ is again a linear map $B A: V \rightarrow Z$.

Examples of Linear Maps

1. The identity $I: V \rightarrow V$ given by $I v=v$ is linear. Its matrix in any basis is the Kronecker delta $\delta_{i j}=1$ if $i=j, 0$ otherwise.
2. Let $C^{1}([a, b])$ be the space of continuously differentiable real-valued functions of $[a, b]$. Then the derivative $d / d x: C^{1}([a, b]) \rightarrow C([a, b])$ is a linear map.
3. Solving a differential equation $d / d x u(x)=f$ consists of finding the preimage of f under this linear map. This is the view of PDE from functional analysis.
4. Similarly, integration $f \mapsto \int_{a}^{b} f$ defines a linear function $C([a, b]) \rightarrow \mathbb{R}$.

Hom Spaces

Let $\operatorname{Hom}(V, W)$ be the set of all linear maps $V \rightarrow W$. Then $\operatorname{Hom}(V, W)$ is a vector space: If $\lambda \in k$, $v \in V$, and $A, B \in \operatorname{Hom}(V, W)$, define

$$
\begin{aligned}
(\lambda A) v & =\lambda(A v) \\
(A+B) v & =A v+B v
\end{aligned}
$$

- You can check that $\operatorname{Hom}(V, W)$ is a vector space.
- We can also define $\operatorname{End}(V):=\operatorname{Hom}(V, V)$.
- Fact: $\operatorname{End}(k) \cong k$.
- Later, we will see that $\operatorname{Hom}(V, W) \cong V^{*} \otimes W$, where V^{*} is the dual space.

Part IV
ISOMORPHISMS

ISOMORPHISMS

Definition 0.7

Two vector spaces are isomorphic if there exists a bijective linear map between them.

- If $A: V \rightarrow W$ is an isomorphism and $\left(e_{1}, \ldots, e_{n}\right)$ is a basis for V, then $\left(A e_{1}, \ldots, A e_{n}\right)$ is a basis for W.

Coupled with the fact that a basis for V is equivalent to an isomorphism $V \rightarrow k^{n}$, we get:

Theorem 3

Any vector space V of dimension n is isomorphic to the space k^{n} of n-tuples.
Note that this isomorphism depends on the choice of basis! It is not canonical:

Definition 0.8

A linear map $V \rightarrow W$ is canonically defined or canonical if it's definition does not depend on the basis chosen.
V and W are canonically isomorphic if there is a canonically defined isomorphism between the two.

CANONICAL ISOMORPHISMS

- We can construct an isomorphism by choosing a basis, but to show its canonical we must show that it gives the same values for any other choice of basis.
- As a general philosophy, canonically isomorphic vector spaces can be "identified" for all intents and purposes, while noncanonically isomorphic ones cannot be. Be careful though!

1. V is canonically isomorphic to itself via the identity map. More generally, any $\lambda /$ for $0 \neq \lambda \in k$, gives a canonical isomorphism.
2. If V is 1-dimensional, the isomorphism $\operatorname{End}(V) \rightarrow k$ is constructed by noting every element of $\operatorname{End}(V)$ is multiplication by a scalar. But this is not canonical: it requires a choice of vector $0 \neq v \in V$ that is mapped on $1 \in k$.

Part V

Making New Vector Spaces From Old Ones

Sums and Products

Let / be a (possibly infinite) set indexing a collection of vector spaces $\left\{V_{i}\right\}_{i \in I}$ defined over the same field k.

Definition 0.9

The direct sum $\bigoplus_{i \in I} V_{i}$ is the set of tuples $\left(v_{i}\right)_{i \in I}$ with $v_{i}=0$ for all but finitely many i.
The direct product $\prod_{i \in I} V_{i}$ is the set of all tuples $\left(v_{i}\right)_{i \in I}$.

- We can define addition and scalar multiplication componenentwise for both: $\lambda\left(v_{i}\right)_{i \in I}=\left(\lambda v_{i}\right)_{i \in I}$ and $\left(v_{i}\right)_{i \in I}+\left(w_{i}\right)_{i \in I}=\left(v_{i}+w_{i}\right)_{i \in I}$. This makes them into vector spaces.
- Note that $\bigoplus_{i \in I} V_{i} \subset \prod_{i \in I} V_{i}$ and the two are the same if I is finite.

Exercise: Show that $\mathbb{R}^{n} \oplus \mathbb{R}^{m}$ is isomorphic to \mathbb{R}^{n+m}, but not canonically.

The Rank-Nullity Theorem

Theorem 4

Let $A: V \rightarrow W$ be a linear transformation between finite-dimensional vector spaces. Then

$$
\operatorname{dimim} A+\operatorname{dim} \operatorname{ker} A=\operatorname{dim} V
$$

If you have taken abstract algebra, this theorem is just a consequence of the first isomorphism theorem:
$V / \operatorname{ker} A \cong \operatorname{im} A$.

Part VI

The Dual Space and Hyperplanes

Dual Space

Definition 0.10

If V is a vector space, the dual vector space V^{*} is defined to be $\operatorname{Hom}(V, k)$.
In other words, it is the set of all linear maps $V \rightarrow k$ (called linear functionals).

1. Integration on $C([a, b])$ defines a linear functional. So does $\left.\frac{d}{d x}\right|_{x=a}$ on the space of differentiable functions.
2. If \mathbb{R}^{2} has coordinates $v=(x, y)$, then linear functionals are $f(v)=x-y, g(v)=2 x$.

Dual Basis

We now show that there exists an isomorphism $V \rightarrow V^{*}$

- Choose a basis $\left(e_{1}, \ldots, e_{n}\right)$ of V. We claim that the tuple $\left(e^{1}, \ldots, e^{n}\right)$ is a basis of V^{*}, called the dual basis, where we characterize e^{i} by

$$
e^{i}\left(e_{j}\right)=\delta_{i j}
$$

- They span the space: We have for $f \in V^{*}$ and $v \in V$ with $v=\sum_{k=1}^{n} v_{k} e_{k}$,

$$
f(v)=f\left(\sum_{k=1}^{n} v_{k} e_{k}\right)=\sum_{k=1}^{n} v_{k} f\left(e_{k}\right)=\sum_{k=1}^{n} e^{k}(v) f\left(e_{k}\right)
$$

so $f=\sum_{k=1}^{n} e^{k} f\left(e_{k}\right)$.

- They are linearly independent: If $\sum_{k=1}^{n} \lambda_{k} e^{k}=0$, then acting on e_{j} we get

$$
0=\left(\sum_{k=1}^{n} \lambda_{k} e^{k}\right)\left(e_{j}\right)=\lambda_{j}
$$

so all the λ_{j} are zero.

Dual Basis

How does this look explicitly?

- Pick a basis and view elements of V as column vectors. Let's do this for \mathbb{R}^{3} with the standard basis, so

$$
v=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right], e_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], e_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], e_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

- Then the dual basis e^{1}, e^{2}, e^{3} are can be viewed as row vectors:

$$
e_{1}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right], e_{2}=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right], e_{3}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right], v=\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right]
$$

since the usual matrix multiplication gives $e^{i} \cdot \boldsymbol{e}_{j}=\delta_{i j}$

- So, after picking a basis, the isomorphism $V \rightarrow V^{*}$ is given by $v \mapsto V^{\top}$, the transpose!
- This isomorphism is not canonical.

A Bit of Geometry

We are familiar with planes, such as the set $\{x=0\} \subset \mathbb{R}^{3}$ or $\{x+2 y-z=0\} \subset \mathbb{R}^{3}$.

Definition 0.11

The hyperplane annihilated by $f \in V^{*}$ is the set $\{x \in V: f(v)=0\}=\operatorname{ker} f$.

Theorem 5

The hyperplane annihilated by nonzero $f \in V^{*}$ has dimension $n-1$. ($n=\operatorname{dim} V$).

Proof.

- The image of f either has dimension 0 or 1 . Since it is nonzero, $\operatorname{dim} \operatorname{im} f=1$.
- From the rank-nullity theorem, $\operatorname{dim} V=\operatorname{dim} \operatorname{im} f+\operatorname{dim} \operatorname{ker} f=1+\operatorname{dim} \operatorname{ker} f$. So $\operatorname{dim} \operatorname{ker} f=n-1$, the dimension of the hyperplane.

As an example, the linear functional corresponding to $\left[a_{1}, a_{2}, a_{3}\right]$ in the standard basis is the hyperplane $\left\{a_{1} x+a_{2} y+a_{3} z=0\right\}$.
This allows us to generalize our intuition to higher dimensions!
Exercise Let $f_{1}, \ldots, f_{m} \in V^{*}$. Show that $\left\{v \in V: f_{i}(v), i=1, \ldots, m\right\}$ is a linear subspace of V. Show that if f_{1}, \ldots, f_{m} are linearly independent, then the dimension of that subspace is $n-m$ (where $n=\operatorname{dim} V$).

ExERCISES

1. Show that $\mathbb{R}^{n} \oplus \mathbb{R}^{m}$ is isomorphic to \mathbb{R}^{n+m}, but not canonically.
2. If V is one-dimensional, show that $\operatorname{End}(V)$ is isomorphic to k, but not canonically.
3. Go on wikipedia and look up the universal properties of \oplus and \times. Verify that they are true.
4. Construct a canonical isomorphism between V and its double dual $V^{* *}$, for V finite-dimensional.
5. Let V be the vector space of polynomials in x of degree $\leq d$ with coefficients in \mathbb{R}. Let $\left(1, x, x^{2}, x^{3}, \ldots, x^{3}\right)$ be the basis of V. For notational convenience, set $e_{i}=x^{i}$. Express the corresponding dual basis e^{i} in terms of the (higher) derivative operator $\left.\frac{d^{i}}{d x^{i}}\right|_{x=0}$
6. Let $f_{1}, \ldots, f_{m} \in V^{*}$. Show that $\left\{v \in V: f_{i}(v), i=1, \ldots, m\right\}$ is a linear subspace of V. Show that if f_{1}, \ldots, f_{m} are linearly independent, then the dimension of that subspace is $n-m$ (where $n=\operatorname{dim} V$).
